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An entangled network model developed by S. F. Edwards is used to identify, in more concrete terms, one 
of the parameters appearing in a phenomenological van der Waals equation of state. 
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I N T R O D U C T I O N  

A quantitative treatment in the total range of deformation 
of rubbers is possible with the aid of the van der Waals 
equation of state of molecular networks 1- 3. This ap- 
proach can be related to the picture of a conformational 
gas with weak interactions. Both of the van der Waals 
parameters, one of them characterizing finite chain exten- 
sibility, the other global interactions between the chains, 
are required to achieve a satisfactory fit to the data 3'4. 

It is natural to ask as to whether there is any 
interpretation of the van der Waals parameters on the 
basis of an appropriate network model. As a first step in 
that direction, we present an identification of the chain 
extensibility parameter with parameters characterizing 
very entangled networks in the theory by S. F. Edwards 
recently published 5. Some interesting conclusions are 
then discussed. 

where k is Boltzman's constant, j2 is defined as 

2 I 1 3 2 
J =~=~i~=l~i (2) 

where 2i describes the strain in direction i. In this regime of 
very entangled networks we have the following relations 
for the system parameters c~ and fl 

and 

L o 
:c = - -  (3) 

L 

Ll 
fl = c¢q0 ~-  (4) 

0 

L 0 is the total length of the primitive path in the 
unstrained state which is in general less than L, the 
invariant total length of the chains, l is the size of the 

TH E  EDWARDS'  MODEL FOR DENSE 
N E T W O R K S  

A randomly crosslinked network is considered, taking 
into account conformational restraints that are caused by 
entanglements of interpenetrating chains. These restraints 
are directly related to the 'primitive path' as shown by the 
broken line in Figure 1. 'Excursions' of chain segments are 
only allowed to occur if there is a surplus of length over 
the primitive path. Whereas the total length of the chains 
is unaltered by deformation, the length of the primitive 
path is increased when approaching at least the limiting 
case where the chains are in the state of maximum 
extension. The primitive path 'system' is assumed to be 
always deformed according to the law of an affine 
transformation. 

Using this model, Edwards is led to the entropy of 

deformation ( S ) a s  given by 
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Figure I Network model of Edwards. The points illustrate the 
chains perpendicular to a reference chain represented by the solid 
line. The broken line would be the primitive path (according to 
Edwards 5) 
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average Kuhn length. To a first approach qo may be 
estimated in terms of the density of entanglements in the 
dense network, leaving this parameter then independent 
upon deformation. This parameter defines at least the 
strength of a local harmonic potential 'pipe' which is 
imposing typical conformational restraints upon excurs- 
ing chain sequences within the densely entangled 
network. 

THE MECHANICAL EQUATION OF THE STATE 
OF THE EDWARDS NETWORK 
In making a comparison with the van der Waals equation 
of state, we need to know the mechanical equation of state 
for simple extension belonging to the potential defined in 
equation (1) with the strain invariant formulated as 

2 2 1=2 +~ (5) 

This potential can be rewritten in the special form 

S l f l /  2 2 \  1 - a  
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For isothermal extensions we thus derive from 

d F =  - TdS (dU =0) (7) 

with strain independent parameters a and fl, the mechani- 
cal equation of state of the very entangled network is 

f - D {  1 
kBT 

with 
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This equation of state is indeed a modification of the ideal 
network defined in the 'diluted regime '6 which is easily 

demonstrated by putting ~ and fl equal to zero, then, 
arriving at 

f 
= D (I0) 

kBT 

The same form of the mechanical equation of state as 
derived here, is obtained in the van der Waals approach, 
thus, allowing a direct comparison of both of these 
approaches. 

THE VAN DER WAALS EQUATION OF STATE 
Accepting finite chain extensibility, there should exist a 
maximum macroscopic strain defined by 

~=L.~ (11) 
L. 

where/-'max and L= denote the macroscopic lengths of the 
system in the state of maximum extension and in the 
unstrained state respectively. Defining then 

Dm=2m-2,~ 2 (12) 

the van der Waals equation of state can be written as 3 

f-f-=D~ Dm aO} (13) 
kT (D=- D 

with a as the second van der Waals parameter (besides 
that of 2.) which is phenomenologically taking into 
account global interactions between the chains t'3. 

It is possible to derive a reduced equation of state by the 
use of the critical coordinates of the van der 'Waals- 
network '7. Due to being of sufficiently large distances 
from the limits of stability, it is then quite easy to defend 
the picture of considering actual molecular networks as 
van der Waals conformational gases with weak interactions 
only 1'8. From this point of view it would be very 
interesting to ask what the relationships are to the 
parameters of the entanglement model network of 
Edwards. 

THE COMPARISON 

The parameters can easily be related by using the 
heuristical state of maximum elongation. Here, in both 
cases a 'catastrophe' occurs, predicting infinitely large 
forces. We are led to the condition: 

a ~ j (  Zm/2'X 1/2 0tS.=---Fl. = 22 +7--/ 
,/3 

(14) 

Having 2,, >> 1 in networks comprising chains which are 
sufficiently long, the approximate relationship results in 

~=--~ (15) 
2= 

It is evident in this case that the van der Waals parameter 
2m in very entangled networks is related to effective 
network functions, also embracing entanglement effects. 
Moreover, it is a very important observation that both of 
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these equations of state indeed deliver the same stress- 
strain behaviour over the total range of strains, provided 
that in the van der Waals equation of state a is taken to 
be zero. This is demonstrated in Figure 2. 

Yet when comparing calculated stress-strain curves 
with experimental data a satisfactory total fit can only be 
achieved by the use of both of the van der Waals 
parameters a and 2m. When compared with the purely 
entropyelastic calculation (curve A in Figure 3) the 
modification in the stress-strain behaviour caused by 
additional global interactions (a>0), is illustrated by 
curve B in Figure 3. 

D I F F E R E N T  D E F O R M A T I O N  MODES 

For  equibiaxial extension the strain invariant of an 
initially isotropic rubber is defined as ~'6 

I ( 2 ) =  222 + 2-2 (16) 

Hence, in this deformational mode, we arrive at the 
relationship 

1 
ct + ~ ]  (17) 

which for 2,.> 1 can be simplified to 
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Figure 2 Calculations with the Edwards and van der Waals 
model deliver good agreement over the total elongation range. 

\ 3  
Parameter used in the Edwards calculation == , f l=0.5 (O)  

10 
and in the van der Waals calculation ).m= 10, a=0 (A) 
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Figure 3 A, Edwards model and the van der Waals model 
wi thout interactions ).M = 10, a= 0. B, The van der Waals model 
with the same )-M 10 but setting the interaction parameter to 
a -0 .2 .  With this set of parameters the calculation can ful ly be 
fitted to Treloar's data 6, also given in Figure 4, curve A 

For equitriaxial extension of the network (i.e. swelling) we 
are led to 

,~(3) = ~ 1 (19) 
m 

such that the following ratios should be in force 

1 1 
2(1)',~ (2) :2t,,3) = 1 • (20) 

with the mode of deformation indicated by the numbers in 
the brackets. We can now observe good accordance 
between the data and calculations as shown in Figure 4. 
The theoretical curves are computed with the 2~)'s as 
given in equation (20) also using the forms of the D,) and 
Dr,,) ° (D(1 )=2-2 -2 ;  D ( 2 ) - 2 - 2 - 5 ) .  

DISCUSSION 

To understand the consequences of the above identifi- 
cations let us first compute the stress-strain behaviour of 
a 'diluted' network with finite chain length (clearly 
representing a very heuristical system). According to the 
classical theory of Kuhn 9 we then have 

f n - 1  1 1 _ 
. . . .  n 2 2  - - '  ~ ( n - b ~ - ~ ) }  k Y - 3 { ~  ( ) 2 5e (20a) 

where 5e- X(x) is the inverse Langevin function, n denotes 
the number of Kuhn segments in the chains. In the 
Gaussian 'single-chain' approach the maximum extensi- 
bility of the chain is approximately given by 6'1° 

* - ( 2 1 )  2m - n ~ 
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Figure 4 Different deformation modes of natural rubber accord- 
ing to Treloar 6. A, Simple extension computed with the para- 
meters 2 m = 10, a = 0.2, modulus= 35.8 Nmm-  2 experimental 
values ( 0 ) ;  B, pure shear calculated with D=, : . - } . -3 ,  letting all 
parameters unaltered; C, equibiaxial extension obtained wi th the 

10 
same parameters as used in A except ,,;.m =---= -, D(2)=,; , -2 -5  

,,/2 

Using this relation it can be seen from Figure 5 that 
systematically increased stresses result for highly en- 
tangled networks due to typical constraints as formulated 
in the Edwards theory 5. Hence, there is evidence that 
conformational abilities in highly entangled networks 
cannot be obtained correctly by a'single-chain' approach: 
The conformational freedoms are clearly bound to limi- 
tations cooperatively developed by interpenetrating 
chains. 

Taking it for granted that 2,. is uniquely related to the 
restraint-parameter ct, we learn from our quantitative fits- 
to-data of a large set of rubbers with strain-independent 
van der Waals parameters in the total range of elo- 
ngations~ -3,7, that the intrinsic parameters of the densely 
entangled system are indeed strain-independent. This is 
once more defending the idea of considering an actual 
network as a 'conformational gas' with weak global 
interactions having liquid-like local properties which 
always satisfy the conditions of internal equilibrium TM 

No doubts can be thrown upon the fact, that in the 
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Figure 5 Calculated stress-strain curve of a dense network, 
represented by the solid line obtained for models employing the 
parameters: van der Waals 2m = x.'n, a = 0; Edwards ~=, , '3 /n ,  
fl= 0.5 (n= 75). The diluted network (Langevin) yields a 
stress-strain behaviour as given by the broken line with 
n equal to 75 

interesting theoretical approach presented by Edwards 5 
the presence of global interactions as expressed phenome- 
nologically by the van der Waals parameter a, has not yet 
been taken into consideration, thus not allowing a 
discussion of the limits of stability in molecular 
networks 7,s. 
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